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ABSTRACT

An analysis of linear wave modes associated with supersonic jets con�ned inside an

acoustically lined rectangular duct is presented. Mathematical formulations are given for

the vortex-sheet model and continuous mean 
ow model of the jet 
ow pro�les. Detailed

dispersion relations of these waves in a two-dimensional con�ned jet as well as an un-

con�ned free jet are computed. E�ects of the con�ning duct and the liners on the jet

instability and acoustic waves are studied numerically. It is found that the e�ect of the

liners is to attenuate waves that have supersonic phase velocities relative to the ambient


ow. Numerical results also show that the growth rates of the instability waves could

be reduced signi�cantly by the use of liners. In addition, it is found that the upstream

propagating neutral waves of an uncon�ned jet could become attenuated when the jet is

con�ned.
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1. INTRODUCTION

The exceedingly high level of jet noise presents a formidable barrier in developing

future generation High Speed Civil Transport planes (see, e.g., Seiner [1]). In a proposed

scheme of jet noise reduction, the exit jet of the engine is guided through a rectangular

duct before discharged into the air. In the designing concept, the purpose of the duct is

twofold. First, cold air could be sucked into the duct by the hot jet through the side inlets

thus cool the jet streams and enhance the mixing. Second, the duct walls, installed with

sound absorbing liners, could absorb a substantial part of the jet noise. It is important

to understand and predict the generation, propagation and attenuation of jet noise inside

a duct with sound absorbing liners. Furthermore, recent studies of supersonic jet noise

generation mechanism have indicated that the growth of the instability waves of the jet is

responsible for the dominant part of the jet noise (see, e.g., Tam and Burton [2]). In view

of these studies, it is believed to be important to re-examine the jet instabilities with the

con�ning lined walls.

Duct acoustics and wave attenuation by wall liners have been investigated extensively

in the literature (see excellent reviews by Nayfeh, Kaiser and Telionis [3], Eversman [4]

and references cited therein). Pridmore-Brown [5] �rst formulated the acoustic wave prop-

agation problem in an attenuating duct with non-uniform mean 
ows. However, due to

computational limitations, a majority of the early works have only considered duct 
ows

with uniform mean velocity and temperature distributions. Later, with increased comput-

ing power, e�ects of the shear 
ow induced by the boundary layers at the duct walls were

included in the acoustic wave attenuation calculations. In most studies, the shear 
ow of

the boundary layer was approximated by a linear pro�le. It was found that the shear 
ow

had a refraction e�ect on the wave propagations. It was also shown that solutions with a

thin boundary layer converge to that of a uniform mean 
ow provided correct boundary

conditions were used in the later (Eversman et al [6]). Most recently, Bies et al [7] pre-

sented a study that takes into account of the coupled e�ects of the acoustic waves inside

the duct and those in the liners. However, historically, little attention has been paid to

the instabilities of the shear 
ow inside the duct and its impact on sound generation.

Recently, the instability and acoustic waves associated with a planar mixing layer

inside a rectangular duct have been studied by Tam and Hu [8]. Their main interest was

in the instability of a con�ned mixing layer at supersonic velocities. They found that

the instabilities of con�ned shear 
ows are quite di�erent from that of their uncon�ned

counterparts at high speeds. Systematic calculations of normal mode solutions showed
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that new instability wave modes are induced by the coupled e�ect of the acoustic modes of

the con�ning duct and the motion of the shear layer. It was also shown that at supersonic

convective Mach numbers, acoustic waves that have supersonic phase velocities relative

to both sides of the shear layer could be unstable (or ampli�ed). The acoustic-mode

instability of supersonic shear 
ows has also been found by Mack [9] for boundary layers

and wakes, and for supersonic jets by Tam and Hu [10]. These studies have shown that at

high supersonic speed, the acoustic-mode instability becomes the dominant 
ow instability.

In this paper, we carry out a detailed analysis of the linear wave modes associated

with a given non-uniform mean 
ow inside a rectangular duct with �nite wall impedance,

including the acoustic waves and instability waves. The numerical results presented here

are, however, limited to two-dimensional waves. Two models of the jet 
ow, a vortex-sheet

model and a continuous mean 
ow model will be used. The mathematical formulation

of the problems is given in Section 2. In Section 3 we present the numerical results and

Section 4 contains the concluding remarks.

2. FORMULATIONS

2.1 MATHEMATICAL MODELS

We consider small amplitude waves associated with a given mean 
ow of a jet pro�le

inside a rectangular duct (Figure 1). Here the mean velocities and densities of the jet core

and the ambient stream will be denoted by uj , �j and ua, �a, respectively. The jet exit

has a width of 2d. The height of the duct is denoted by 2h and the width by B. The

top and bottom walls of the duct are lined with acoustically treated materials with �nite

acoustic impedance. Two side walls are taken to be solid walls. For simplicity, we assume

that the top and bottom walls are lined with the same materials. From linear stability

considerations, the locally parallel 
ow assumption will be used through our study. To

facilitate the numerical investigation, two models will be used in the present paper. In

the �rst model, here referred to as the vortex-sheet model, the mean 
ow is piecewise

uniform for the velocity and temperature. This pro�le models the 
ow near the nozzle

exit. The advantage of the vortex-sheet model is that a closed form dispersion equation

can be found. This allows for an extensive numerical study about the nature of all the

wave modes. In the second model the mean 
ow is continuous. This permits more realistic


ows and models the 
ow downstream of the nozzle exit.

2.2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
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We express each 
ow variable as a mean quantity plus a small perturbation as follows

: 0
BBB@
u(x; y; z; t)
v(x; y; z; t)
w(x; y; z; t)
p(x; y; z; t)
�(x; y; z; t)

1
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In the above, the x coordinate is in the downstream direction, y is in the vertical

direction and z is in the spanwise direction. u, v, w are the velocities in the x, y, z

directions, respectively, p is the pressure and � is the density. An overbar indicates the

mean quantity and prime indicates the perturbation. It is straight forward to �nd that

the linearized governing equations for inviscid, non-heat-conducting 
uids are :
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The temperature T is related to the pressure and density by the equation of state :

p = �RT (2:6)

To equations (2.1)-(2.5), we seek solutions of the form

0
BBB@
u0(x; y; z; t)
v0(x; y; z; t)
w0(x; y; z; t)
p0(x; y; z; t)
�0(x; y; z; t)

1
CCCA =

0
BBB@
û(y) cos(2�mz=B)
v̂(y) cos(2�mz=B)
ŵ(y) sin(2�mz=B)
p̂(y) cos(2�mz=B)
�̂(y) cos(2�mz=B)

1
CCCA ei(kx�!t) (2:7)

By substituting (2.7) into equations (2.1)-(2.5) and proper boundary conditions, an

eigenvalue problem is formed. In (2.7), the boundary conditions at two solid side walls,

located at z = �B=2, have been satis�ed automatically. At the acoustically treated top
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and bottom walls, located at y = �h, the kinematic boundary condition is the continuity

of particle displacement at the lined walls. For harmonic waves, it yields (Nayfeh et al [3])

v̂ = �
(k�u� !)

!Z
p̂ (2:8)

where Z is the wall impedance (Z =
pwall

vwall

).

In (2.7), m is a modal number indicating wave re
ections in the z direction. When

m = 0, the waves are two-dimensional. The mathematical formulation of the eigenvalue

problems for the vortex-sheet model and the continuous mean 
ow pro�le model is given

below.

2.3 VORTEX-SHEET MODEL

For the vortex-sheet model the jet boundaries are represented by in�nitely thin vortex

sheets. Thus the mean 
ow is piecewise uniform and a closed form dispersion equation

can be found. In addition, due to the symmetry of the mean 
ow, it is convenient to

consider symmetric (
dp̂(0)

dy
= 0) and antisymmetric (p̂(0) = 0) wave modes separately. As

a result only the 
ow in the upper half of the duct needs to be considered. By satisfying

the boundary conditions at the wall and the jet interface, the dispersion equation which

implicitly relates ! and k is found as follows :

Symmetric Modes :

�j tan(�jd)

�j(! � kuj)2
�

�a

�a(! � kua)2
�a(! � kua)

2 cos[�a(h� d)]� i!�aZ sin[�a(h� d)]

�a(! � kua)2 sin[�a(h� d)] + i!�aZ cos[�a(h� d)]
= 0

(2:9a)

Antisymmetric Modes :

�j cot(�jd)

�j(! � kuj)2
+

�a

�a(! � kua)2
�a(! � kua)

2 cos[�a(h� d)]� i!�aZ sin[�a(h� d)]

�a(! � kua)2 sin[�a(h� d)] + i!�aZ cos[�a(h� d)]
= 0

(2:9b)

where

�a =

s�
! � kua

ca

�2

� k2 �

�
2m�

B

�2

�j =

s�
! � kuj

cj

�2

� k2 �

�
2m�

B

�2

and the speeds of sound are given by ca;j =

r

p

�a;j
.
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Here it is interesting to note two special cases of the dispersion equations given above,

i.e., when the mean 
ow is uniform and when the duct walls are solid boundaries.

Uniform mean 
ow

For a uniform 
ow pro�le inside the duct, we have ua = uj , �a = �j and d = h. The

dispersion relation equations (2.9a) and (2.9b) then become

tan(�jd)�
�j(! � kuj)

2

i!�jZ
= 0

for symmetric modes and

cot(�jd) +
�j(! � kuj)

2

i!�jZ
= 0

for antisymmetric modes, respectively. The above two equations are the same as those

obtained in the literature for uniform mean 
ows (Nayfeh et al [3]).

Solid walls

For solid walls, Z ! 1. In this case, The dispersion relation equation (2.9a) and

(2.9b) reduces to
�j tan(�jd)

�j(! � kuj)2
+
�a tan[�a(h� d)]

�a(! � kua)2
= 0

for symmetric modes (Tam and Hu [8]) and

�j cot(�jd)

�j(! � kuj)2
�
�a tan[�a(h� d)]

�a(! � kua)2
= 0

for antisymmetric modes, respectively.

2.4 CONTINUOUS MEAN FLOW MODEL

For continuous mean 
ow pro�les, upon substituting (2.7) into (2.1) - (2.5), the lin-

earized governing equations can be reduced to a single equation for the pressure perturba-

tion as given below :

d2p̂

dy2
+

�
2k

! � k�u

d�u

dy
�
1

��

d��

dy

�
dp̂

dy
+

"�
! � k�u

�c

�2

� k2 �

�
2m�

B

�2
#
p̂ = 0 (2:10)

where �c is the speed of sound.

The boundary conditions for p̂ are, at y = h,

p̂+
i!Z

��a(! � k�ua)2
dp̂

dy
= 0 (2:11)
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and, at y = 0,
dp̂

dy
= 0 (symmetric modes) (2:12a)

or

p̂ = 0 (antisymmetric modes) (2:12b)

Equation (2.10) and the boundary conditions (2.11), (2.12) form an eigenvalue prob-

lem. The problem will be solved numerically by integrating from the center line y = 0

to the upper boundary y = h and employing a shooting method using the results of the

vortex-sheet model as the starting solutions.

3. NUMERICAL RESULTS

For numerical results shown below, the Mach numbers of the jet and ambient 
ow

are Mj = 2:0 and Ma = 0:2 respectively. The speeds of sound ratio ca=cj = 0:5. All

the results shown are with respect to two-dimensional symmetric wave modes. Results of

antisymmetric modes are similar and not shown here.

3.1 RESULTS OF THE VORTEX-SHEET MODEL

Our main interest is to determine the normal modes associated with a two-dimensional

supersonic jet con�ned inside a duct and study the e�ects of the con�ning lined walls on

these wave modes. For the purpose of making comparisons, the dispersion relations of an

uncon�ned jet will be discussed brie
y.

3.1.1 Uncon�ned jets

The normal modes of a free circular jet has been studied extensively by Tam and Hu

[10]. Here some properties of a two-dimensional free jet will be examined brie
y.

For a two-dimensional free jet, the dispersion equation relating the frequency ! and

wavenumber k is given by :

i�a cos(�jd)

�a(! � kua)2
+

�j sin(�jd)

�j(! � kuj)2
= 0 (3:1a)

for the symmetric modes and

i�a sin(�jd)

�a(! � kua)2
�

�j cos(�jd)

�j(! � kuj)2
= 0 (3:1b)
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for the antisymmetric modes (Gill [11]). The dispersion relation of the symmetric modes

has been computed here and is shown in Figure 2, (kr and ki are the real and imaginary

parts of the wavenumber k). Our numerical studies of the dispersion equation (3.1a)

indicate that the present `top hat' jet pro�le possesses instability waves as well as neutrally

stable acoustics waves. Furthermore, since the convective Mach number (here de�ned as

Mc = (uj � ua)=(cj + ca)) is greater than one in the present case, a family of supersonic

instability waves is also present in addition to the Kelvin-Helmholtz instability wave. This

family of unstable modes have supersonic phase velocities relative to both the jet and the

ambient streams. The properties of these supersonic instability waves were more fully

discussed in Tam and Hu [10].

In addition to the unstable wave modes, namely the K-H wave and the supersonic

instability waves, there are also two families of neutrally stable waves associated with the

free jet. Here we should refer to these two families as the family C and family D acoustic

waves. For convenience of discussion, we should also divide the kr�! plane into �ve regions

by the sonic lines as indicated in the �gure. Two aspects of the neutral acoustic waves

are worth pointing out. First, we note that the neutral waves are found only in region I,

above the sonic line !=kr = ua + ca or in region II, below the sonic line !=kr = ua � ca.

That is, the phase velocity, Cph = !=k, of the neutral wave is always subsonic relative to

the ambient, i.e. jCph � uaj � ca. For class C waves we get 0 � Cph � ua + ca and for

class D waves we get ua� ca � Cph � 0. In other words, for the free jet, the neutral waves

attached the jet are necessarily decaying away from the jet. Second, it has been found that

part of the class D waves represent upstream waves with a phase velocity close to ua � ca

as indicated in Figure 2 (see also Tam and Hu [10]). This means that it is possible to have

upstream propagating neutral waves attached to the jet even though the jet mean velocity

is supersonic. This point will be re-examined more closely later.

3.1.2 Con�ned jets

We now turn to the e�ects of the duct walls and compute the normal modes associated

with a con�ned jet. We �rst deal with the case when the duct walls are solid boundaries.

The case when the duct walls are lined will be dealt with in Section 3.1.3. For solid walls,

we let Z ! 1 in (2.9). With the vortex sheet model, the frequency and wavenumber of

the wave modes are then the roots or zeroes of the dispersion equation (2.9a) or (2.9b). In

the present work, we are interested in the spatially attenuating or growing waves. Thus

! will be a real number. However, for systems that have spatial instabilities, it is not

su�cient to just set the frequency ! to be a real number and look for the zeroes of the
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dispersion equations in the complex k-plane. One must distinguish the downstream and

upstream propagating waves. Without the proper distinction, a downstream-propagating

growing wave may be erroneously considered as an upstream-propagating attenuating wave

and vice versa. For this reason, the criterion developed by Briggs [12] and also used by

Tam and Hu [8] will be followed here. In this procedure, the frequency ! is �rst given a

complex number whose real part is the frequency of interest and imaginary part is some

large number. Then the corresponding zeroes of the dispersion equation are found in the

complex k-plane. A !-contour deformation process is applied in which the real part of

the ! is kept constant while the imaginary part of ! is gradually reduced to zero. In this

process, the corresponding zeroes of the dispersion equation in the k-plane is traced as the

imaginary part of the ! is being reduced. In Briggs' criterion, the zeroes originated from

the upper half k-plane then represent the downstream propagating waves and the zeroes

from the lower half k-plane represent the upperstream propagating waves.

To illustrate the above process, the traces of the zeroes in the k-plane as the imaginary

part of ! is being reduced are plotted in Figure 3 for the case of real(!d=uj) = 3. In this

way, the propagation direction of wave mode associated with each zero in the k-plane is

correctly identi�ed. Those zeroes that move across the real k-axis will represent instability

waves. Those zeroes that remain in the upper or lower half k-plane then represent decaying

or attenuated waves. Moreover, zeroes that lie on the real k-axis in Figure 3 represent the

neutrally stable acoustic waves.

The above procedure has been applied systematically as the real part of ! changes.

The dispersion relations so obtained are given in Figure 4. (Similar procedure has been

used in the free jet calculations given in the previous section). Here for convenience of

discussion, wave modes have been classi�ed into two families of unstable waves, the A and

B modes, and two families of neutrally stable acoustic waves, the C and D waves. However,

a detailed description of the characteristics of each family of the waves will not given here.

They are quite similar to the four families previously found in a planar mixing layer (Tam

and Hu [8]).

We now compare the dispersion relation of the con�ned jet given in Figure 4 with that

of an uncon�ned free jet shown in Figure 2. We �rst note that, due to the con�nement,

the neutral waves can have phase speed supersonic to the ambient 
ow. The dispersion

relation curves for family C and family D neutral waves now extend across the sonic line

Cph = ua � ca continuously.

Furthermore, a close inspection of Figure 4, the dispersion relation diagram, shows
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that the family D waves now all have a positive group velocities. To study the upstream

waves, in Figure 5, the real and imaginary parts of k as a function of ! are plotted for

the �rst three zeroes that originate from the lower half k-plane in the contour deformation

process. It is seen that although these wave numbers have negative imaginary parts, they

are actually attenuating waves as they are upstream propagating waves. Careful numerical

computations show that for !d=uj < 4, no zero reaches the real k-axis from below. In

other words, low frequency upstream propagating waves of the free jet are attenuated due

to the presence of the con�ning walls.

Since the upstream propagating waves of the uncon�ned jet have phase velocities close

to ua � ca in the uncon�ned jets (see Figure 2), we can now calculate the group velocity,

@!=@k, for neutral waves along the sonic line Cph = ua � ca. By letting !=k = ua � ca,

the derivative @!=@k can be obtained analytically from the dispersion equations given by

(2.9a) and (2.9b). The expression for @!=@k is not given here for brevity. To have neutral

waves that travel upstream, it is necessary that @!=@k < 0. It is found that, for both the

symmetric and antisymmetric modes, this requires that

h� d

d
>

cauj(uj + ca � ua) � c2jca

2(ca � ua)(uj + ca � ua)2

or in non-dimensional parameters,

h� d

d
>

Mj [Mj + (1�Ma)
ca

cj
]� 1

2(1�Ma)[Mj + (1�Ma)
ca

cj
]2

(3:2)

Figure 6 plots the boundary curves in the space of Mj v.s. d=h for di�erent ambient

Mach numbers. Asymptotically, for hot jets and low Mach number in the ambient, the

upstream waves are attenuated when d=h > 2=3. For cold jets, this condition is d=h > 3=4.

3.1.3 E�ects of wall liners

We now study the e�ects of the �nite wall impedance of the liners on the acoustic and

the instability waves discussed in the previous section. A point-reacting wall impedance

model will be used in the present study. In this model, the impedance of the wall is given

by

Z = �aca

�
R + i cot(

!`

ca
)

�
(3:4)

where �a, ca are the density and speed of sound of the ambient 
uid, ` is the thickness of

the liner cavity and R is the resistance (non-dimensional) of the wall facing the 
ow. In

all the results reported below, we have used ` = 0:05h and varied R.
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Numerical calculations show that the liner e�ect varies for waves in di�erent regions

in the dispersion diagram. For instance, for the acoustic waves in regions I and V, the

phase velocity is subsonic relative to the ambient 
ow but supersonic relative to the jet.

These waves are trapped inside the jet and their eigenfunctions decay away from the

jet. The e�ect of the liner is thus minimal. On the other hand, for acoustic waves in

regions II, III and V, the phase velocity is supersonic relative to the ambient 
ow. Their

eigenfunctions show a larger pressure perturbation at the wall. Thus a larger in
uence of

the liner was found on the wave modes in these regions. This is clearly shown in Figure

7 where eigenfunctions of selected wave modes for solid and lined walls are plotted. Also

plotted are the eigenfunctions of A and B instability wave modes. For family A waves,

the eigenfunction has a peak at the jet boundary, y = 0:75h, and decays towards the wall.

The e�ects of the lined walls thus are not signi�cant. For the B modes, however, the

eigenfunction decays slowly towards the wall. For this family of waves, a larger e�ect of

the lined walls was shown.

In Figure 8 we show the e�ects of the acoustic liner on the growth rates of the in-

stability waves. Plotted are the spatial growth rates of the �rst three family A waves for

wall resistance R = 1; 2; 5 respectively. Clearly the growth rates are reduced when �nite

impedance walls are used. However we also point out that the attenuation e�ects are not

signi�cant for second and third modes, namely A2 and A3 modes.

In Figure 9 the e�ects of the liners on the acoustic modes are shown. Plotted are

the imaginary parts of the complex wave number as functions of 1=R. It is seen that

with lined walls, the family D waves are attenuated but the family C waves are actually

destablized. Further investigation have indicated that this destablization is a direct result

of the merging of the C and unstable B waves when the impedance Z becomes a complex

number. Again it is clear from Figure 9 that the degree of in
uence on the liners on the

acoustic waves depends largely on the phase velocity of the waves and thus the region in

the dispersion diagram. The least a�ected are the waves in regions I and V in which the

phase velocity of the wave is subsonic relative to the ambient 
ow.

3.2 RESULTS OF THE CONTINUOUS MEAN FLOW MODEL

For the continuous mean 
ow model, we have used a hyperbolic tangent for the mean

velocity pro�le, namely,

�u(y) =
1

2
f�ua + �uj � (�ua � �uj) tanh[2(jyj � d)=�!]g
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and obtained the mean temperature pro�le from the Crocco's relations (Hu [13]). Here �!

represents the vorticity thickness of the shear layer. Our study with the �nite thickness

mean velocity pro�le will be emphasized on the liner e�ects on the instability waves. In

particular, only the family A instability waves will be examined here since they have larger

growth rates than the family B modes.

In Figure 10, the growth rate (�kid) as a function of the vorticity thickness is given

for the most ampli�ed A1 and A2 modes. Calculations were made for both the solid and

lined walls. In general, as the thickness of the jet shear layer increases, the growth rate of

the instability waves decreases. However it is clear from the results shown that the liner

becomes more e�ective in reducing the growth rates of the instability waves when the �nite

thickness e�ects are considered. In Figure 11 we show the variation of the eigenfunctions as

the thickness of the jet shear layer increases. It is seen that as the thickness increases, the

relative peak of the eigenfunction at the jet boundary is reduced. As a result the in
uence

of the wall boundary condition increases. Based on the results shown, for a realistic jet


ow with a �nite vorticity thickness, say �! > 0:05d, the acoustic liner can reduce the

growth rate of the instability waves quite signi�cantly.

4. CONCLUDING REMARKS

A detailed analysis of the linear wave modes associated with a jet con�ned inside

acoustically lined duct walls has been carried out. The dispersion relations of the acoustic

and instability waves have been computed and given for the two-dimensional modes. In

particular, the e�ects of the con�ning walls and the liners on the linear waves of the jet

have been studied. It is found that the e�ect of the liners is to attenuate waves that

have supersonic phase velocities relative to the ambient 
ow. The attenuation, however,

is less e�ective for the waves that have a subsonic phase velocity relative to the ambient


ow. In addition, it is found that due to the presence of the con�ning walls, the upstream

propagating waves associated with a free supersonic jet could become attenuated under

given conditions. Furthermore, it is shown that, with a �nite shear layer thickness, the

acoustic liners have a quite signi�cant e�ect in reducing the growth rates of the instability

waves of the jet.

In view of recent studies on supersonic jet noise generation mechanism [2], the growth

of the instability waves of the jet plays a central role in the noise generation. The results

of the present study indicate that growth rates of the instability waves can be reduced

greatly by employing lined walls. It is then reasonable to expect that this reduction in the
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growth rate of the instability waves may not only result in a change in the hydrodynamics

(spreading rate, turbulent structures) but also result in a change in the noise generation

of the jet. Moreover, in recent studies of jet screech tone noises, it has been suggested

that the upperstream propagating waves of the free jet is an essential part of the feed-back

mechanism (Tam and Norum [14]). The present study, however, shows that these upstream

propagating waves could become attenuated due to the con�nement of the jet. It will be

interesting and challenging to further examine and explore the direct consequences of these

wave propagation properties on the noise generation. This, however, is beyond the scope

of this study.
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Figure 2. Dispersion relation of an uncon�ned jet. Shown are the symmetric modes.
Mj = 2:0,Ma = 0:2, ca=cj = 0:5. |o| Kelvin-Helmholtz mode, ||| supersonic
instability modes, - - - - - family C modes, | | | family D modes. | - | - | sonic
lines !=kr = ua � ca, | - - | - - | sonic lines !=kr = uj � cj.
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Figure 3. Trajectories of zeroes of the dispersion equation in the complex k plane
as !d=uj is varied from 3+5i to 3. Shown are the symmetric modes with solid walls.
Mj = 2:0,Ma = 0:2, ca=cj = 0:5, d=h = 0:75.
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Figure 4. Dispersion relation of an con�ned jet. Shown are the symmetric modes.
Mj = 2:0,Ma = 0:2, ca=cj = 0:5, d=h = 0:75, solid walls at y = �h. |||| unstable
modes, - - - - - family C modes, | | | family D modes. | - | - | sonic lines
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Figure 5. Dispersion relation of the upstream propagating waves. Mj = 2:0,Ma = 0:2,
ca=cj = 0:5, d=h = 0:75, solid walls.
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Figure 6. Boundaries for attenuation of the upstream propagating waves.
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Figure 7. Eigenfunctions for selected waves modes. ||{ solid walls, - - - - - lined walls
with R = 2. Superscripts indicate the regions of the wave mode in Figure 4. Symmetric
modes, Mj = 2:0,Ma = 0:2, ca=cj = 0:5, d=h = 0:75.
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Figure 8. Growth rates of A1, A2 and A3 modes. ||| solid walls, | - | - |
R=5, | | | R=2, - - - - - R=1. Symmetric modes, Mj = 2:0,Ma = 0:2, ca=cj = 0:5,
d=h = 0:75.
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Figure 9. ki as a function of 1=R for the C and D wave modes. Superscripts indicate
the regions of the wave mode in Figure 4. Symmetric modes, Mj = 2:0,Ma = 0:2, ca=cj =
0:5, d=h = 0:75.
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Figure 10. Growth rates of the most unstable A1 and A2 modes as functions of jet
mixing layer thickness. ||| solid walls, | - | - | R=5, | | | R=2, - - - - - R=1.
Symmetric modes, Mj = 2:0,Ma = 0:2, ca=cj = 0:5, d=h = 0:75.
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Figure 11. Eigenfunctions of the most unstable A1 and A2 modes as thickness varies.
|||{ solid wall, - - - - - R=2.
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